Class XII

INDIAN SCHOOL DARSAIT Mathematics Worksheet Worksheet # 11 Differentiability # 5 (Chapter – 5 : Continuity & Differentiability)

CLASS WORK

ROLLE'S THEOREM & LAGRANGE'S MEAN VALUE THEOREM

Verify Rolle's Theorem for the following functions	
1.	$f(x) = x^2 - 5x + 6$ on [2, 3]
2.	$f(x) = x^3 - 6x^2 + 11x - 6 \text{on [1, 3]}$
3.	$f(x) = (x-a)^m (x-b)^n$ on [a, b]
4.	$f(x) = \sin^2 x$ on $[0, \pi]$
5.	$f(x) = \operatorname{Sin} x + \operatorname{Cos} x - 1$ on $\left[0, \frac{\pi}{2}\right]$
6.	Find the value of c of the Rolle's Theorem for the function $f(x) = e^x \operatorname{Sin} x$, $x \in [0, \pi]$
7.	It is given that for the function $f(x) = x^3 - 6x^2 + ax + b$ on [1, 3], Rolle's theorem holds
	with $c = 2 + \frac{1}{\sqrt{3}}$. Fins the values of a and b.
8.	It is given that for the function $f(x) = x^3 + bx^2 + ax$ on [1, 3], Rolle's theorem holds with
	$c = 2 + \frac{1}{\sqrt{3}}$. Fins the values of a and b.
	Verify Mean Value Theorem for the following functions
9.	f(x) = (x-3)(x-6)(x-9) on [3,5]
10.	$f(x) = x(x-1)(x-2)$ on $[0, \frac{1}{2}]$
11.	$f(x) = \sqrt{25 - x^2}$ on [-3, 4]
12.	$f(x) = x - 2\sin x$ on $[-\pi, \pi]$
13.	$f(x) = 2\operatorname{Sin} x + \operatorname{Sin} 2x \text{on } [0, \pi]$
14.	Using Rolle's Theorem, find the point on the curve $y = x^2$, $x \in [-2, 2]$, where the tangent is parallel to the x – axis.
15.	Using Mean Value Theorem, prove that there is a point on the curve $y = 2x^2 - 5x + 3$
	between the points $(1,0)$ and $(2,1)$ where the tangent is parallel to the chord AB. Also find the point
HOME WORK	
	Verify Rolle's Theorem for the following functions
16.	$f(x) = x(x-3)^2$, $0 \le x \le 3$
17.	$f(x) = \sqrt{4 - x^2}$ on $[-2, 2]$
18.	$f(x) = \sin x - \sin 2x$ on $[0, \pi]$
19.	$f(x) = \log(x^2 + 2) - \log 3$ in [-1, 1]

Class	INDIAN SCHOOL DARSAIT s XII Mathematics Worksheet Worksheet # 11 Differentiability # 5 (Chapter – 5 : Continuity & Differentiability)
20.	$f(x) = x(x+3)e^{\frac{-x}{2}}$ in [-3, 0]
	Verify Mean Value Theorem for the following functions
21.	f(x) = x(x-2) on [1.3]
22.	f(x) = (x-1)(x-2)(x-3) on [0, 4]
23.	$f(x) = x + \frac{1}{x}$ in [1,3]
24.	$f(x) = x^2 - 4x - 3$ in [a,b] where a = 1, b = 4
25.	Find the point on the curve $y = x^2 + x$, where the tangent is parallel to the chord joining (0, 0) and (1, 2).
26.	Find the point on the curve $y = (x-3)^2$, where the tangent is parallel to the chord joining (3, 0) and (4,1).