	INDIAN SCHOOL DARSAIT
Class	s XII Mathematics Worksheet
	Worksheet # 13 Application of Derivatives # 2
	Increasing & Decreasing Functions
	(Chapter – 6 : Application of Derivatives)
	CLASS WORK
1.	Show that the function f given by $f(x) = x^3 - 3x^2 + 4x$, $x \in R$ is strictly increasing on R.
2.	Prove that the function given by $f(x) = x^3 - 3x^2 + 3x - 100$ is increasing in R.
3.	Show that the function given by $f(x) = \sin x$ is
	(a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$
	(b) strictly decreasing in $\left(\frac{\pi}{2},\pi\right)$ (c) neither increasing nor decreasing in (0, π)
4.	Prove that the function f given by $f(x) = \log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$
	and strictly decreasing on $\left(\frac{\pi}{2},\pi\right)$
5.	Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is (a) strictly increasing (b) strictly decreasing
6.	Find the intervals in which the function f given by $f(x) = 2x^2 - 3x$ is (a) strictly increasing (b) strictly decreasing
7.	Find the intervals in which the function f given by f (x) = $4x^3 - 6x^2 - 72x + 30$ is (a) strictly increasing (b) strictly decreasing.
8.	Find the intervals in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is (a) strictly increasing (b) strictly decreasing
9.	Find the intervals in which the function f given by $f(x) = 5 + 36x + 3x^2 - 2x^3$ is (a) strictly increasing (b) strictly decreasing
10.	Find the intervals in which the $f() = \frac{3}{4}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$ is strictly increasing or decreasing:
11.	Find the intervals in which the following functions are strictly increasing or decreasing: i) $f(x) = \sin x + \cos x, 0 \le x \le 2\pi$
	ii) $f(x) = \sin^4 x + \cos^4 x, 0 \le x \le \frac{\pi}{2}$
12.	Separate $\left[0, \frac{\pi}{2}\right]$ into sub – intervals in which $f(x) = \sin 3x$ is increasing and decreasing.
13.	Show that $y = \log(1+x) - \frac{2x}{2+x}, x > -1$, is an increasing function of x throughout its
14.	domain. Prove that $y = \frac{4 \sin \theta}{2 + \cos \theta} - \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$

	INDIAN SCHOOL DARSAIT
Class	s XII Mathematics Worksheet
	Worksheet # 13 Application of Derivatives # 2
	Increasing & Decreasing Functions
	(Chapter – 6 : Application of Derivatives)
15.	Find the least value of a such that the function f given by $f(x) = x^2 + ax + 1$ is strictly
	increasing on (1, 2).
	HOME WORK
16.	Prove that the function f given by $f(x) = x^2 - x + 1$ is neither strictly increasing nor strictly decreasing on (-1, 1).
17.	Prove that the function given by $f(x) = \cos x$ is (a) strictly decreasing in $(0, \pi)$
	(a) strictly decreasing in $(0, R)$ (b) strictly increasing in $(\pi, 2\pi)$, and
	(c) neither increasing nor decreasing in $(0, 2\pi)$.
18.	Show that the function given by $f(x) = 3x + 17$ is strictly increasing on R.
19.	Show that the function given by $f(x) = e^{2x}$ is strictly increasing on R.
20.	Find the intervals in which the following functions are strictly increasing or decreasing: (a) $x^2 + 2x = 5$
	(a) $x^2 + 2x - 3$ (b) $10 - 6x - 2x^2$
	(c) $-2x^3 - 9x^2 - 12x + 1$
	(d) $(x + 1)^3 (x - 3)^3$
21.	Find the intervals in which the following functions are strictly increasing or decreasing:
	i) $f(x) = 2x^3 - 3x^2 - 36x + 7$
	ii) $f(x) = 5x^3 - 15x^2 - 120x + 3$
	Find the intervals in which the $f() = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7$ is strictly increasing or
	decreasing:
22.	Find the values of x for which $y = [x (x - 2)]^2$ is an increasing function