(Chapter-1: Relations \& Functions)

CLASS WORK

1. Show that the function $f: R \rightarrow R$ defined by $f(x)=3-4 x$ is one - one and onto (Bijective)
2. Let $\mathrm{A}=\mathrm{R}-\{3\}, \mathrm{B}=\mathrm{R}-\{1\}$. Consider the function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by $f(x)=\frac{x-1}{x-3}$. Prove that f is one - one and onto.
3. Let $\mathrm{A}=\mathrm{R}-\{3\}, \mathrm{B}=\mathrm{R}-\left\{\frac{2}{3}\right\}$. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ by $\mathrm{f}(\mathrm{x})=\frac{2 x-4}{3 x-9}$, prove that f is a bijection
4. Show that the function $f: R \rightarrow R$ defined by $f(x)=x^{3}+x$ is a bijection
5. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{n})=\mathrm{n}-(-1)^{\mathrm{n}}$ for all $\mathrm{n} \in \mathrm{N}$ is a bijection.
6. Show that the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $f(n)=\left\{\begin{array}{l}\frac{n+1}{2} \text { if } n \text { is odd } \\ \frac{n}{2} \text { if } n \text { is even }\end{array}\right.$ is many - one onto function.
7. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$ is one - one but not onto.
8. Show that the signum function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=\left\{\begin{array}{r}1 \text { if } x>0 \\ 0 \text { if } x=0 \\ -1 \text { if } x<0\end{array}\right.$
is neither one - one nor onto.
9. Find fog and gof if $f, g: R \rightarrow R$ given by i) $f(x)=\operatorname{Sin} x, g(x)=4 x^{2}$

$$
\text { ii) } f(x)=x^{2}, g(x)=2 x+1
$$

10. If the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{g}(\mathrm{x})=\frac{x}{x-1}$, then find fog and gof. Hence find fog (2) and gof (-3).
11. If f be the greatest integer function and g be the modulus function. Find the value of $\operatorname{gof}\left(\frac{-1}{3}\right)-f o g\left(\frac{-1}{3}\right)$.
12. Let $\mathrm{A}=R-\left\{\frac{7}{5}\right\}, \mathrm{B}=R-\left\{\frac{3}{5}\right\}$. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ by $f(x)=\frac{3 x+4}{5 x-7}$ $g(x)=\frac{7 x+4}{5 x-3}$, then prove that gof $=\mathrm{I}_{\mathrm{A}}$ and $\mathrm{fog}=\mathrm{I}_{\mathrm{B}}$.
13. If $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be two functions defined by $f(x)=|x|+x$ and $g(x)=|x|-x, \forall \mathrm{x} \in \mathrm{R}$, then find fog and gof. Also find fog(-3), fog(5) and gof(-2)
14. Consider $\mathrm{f}:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b, f(3)=c$. Find f^{-1}. Show that $\left(f^{-1}\right)^{-1}=f$.

Class XIIINDIAN SCHOOL DARSAIT Mathematics Worksheet	
	(Chapter-1: Relations \& Functions)

15.	If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-7$, show that f is invertible. Find f^{-1}
16.	If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $\mathrm{f}(\mathrm{x})=10 \mathrm{x}+7$, show that f is invertible. Find f^{-1}
17.	If f is an invertible function defined by $f(x)=\frac{3 x-2}{5}$, find f^{-1}
18.	Let $\mathrm{f}: R-\left\{\frac{-4}{3}\right\} \rightarrow \mathrm{R}$ be a function defined by $f(x)=\frac{4 x}{3 x+4}$. Prove that $\mathrm{f}: \mathrm{S} \rightarrow R-\left\{\frac{-4}{3}\right\}$, where

19. Find the inverse of the function $\mathrm{f}(\mathrm{x})=\frac{a^{x}-a^{-x}}{a^{x}+a^{-x}}$
20. Find the value of the parameter α for which the function $f(x)=1+\alpha x, \alpha \neq 0$, is the inverse of itself.
21. Consider $\mathrm{f}: \mathrm{R}_{+} \rightarrow[-5, \infty)$ given by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible with $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$
22. Let $\mathrm{f}:[0, \infty) \rightarrow R$ be a function defined by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Prove that f is not invertible. Modify codomain of f to make it invertible and find its inverse.
23. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ be a function given by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+12 \mathrm{x}+15$. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$, where S is the range of f , is invertible. Also find the inverse of f and hence find $f^{-1}(31)$ and $f^{-1}(87)$
24. Prove that $f: R_{+} \rightarrow[-9, \infty)$ given by $f(x)=5 x^{2}+6 x-9$. Prove that f is invertible. Find the inverse of f .
25. Prove that $f: R_{+} \rightarrow[-5, \infty)$ given by $f(x)=3 x^{2}+2 x-5$. Prove that f is invertible. Find the inverse of f .
26. Consider $\mathrm{f}:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{g}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \rightarrow\{$ apple, ball, cat $\}$ defined as $\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(2)=$ b, $f(3)=c g(a)=$ apple, $g(b)=$ ball, $g(c)=c a t$. Show that f, g and gof are invertible. Find out $\mathrm{f}^{-1}, \mathrm{~g}^{-1}$ and (gof) ${ }^{-1}$. Also show that (gof) ${ }^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.
27. Let $A=\{1,2,3,4\} B=\{3,5,7,9\}$ and $C=\{7,23,47,79\}$. f; $A \rightarrow B$, $g: B \rightarrow C$ defined by $f(x)=$ $2 \mathrm{x}+1, \mathrm{~g}(\mathrm{x})=\mathrm{x}^{2}-2$. Express (gof) ${ }^{-1}$ and $\mathrm{f}^{-1} \mathrm{og}^{-1}$ as set of ordered pairs and verify that $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$
28. If $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$ defined as $f(x)=\left\{\begin{array}{l}x-1, \text { if } x \text { is odd } \\ x+1, \text { if } x \text { is even }\end{array}\right.$, show that f is invertible. Find the inverse of f, where W is the set of whole numbers.
29. If the function $f: R \rightarrow R$ be defined by $f(x)=2 x-3$, $g: R \rightarrow R$ by $g(x)=x^{3}+5$. Find fog. Hence show that fog is invertible. Also find $(f o g)^{-1}$ and $(f o g)^{-1}(9)$

HOME WORK

30. Show that the function $f: R \rightarrow R$ defined by $f(x)=a x+b$ is a bijection.

(Chapter - 1: Relations \& Functions)

31.
32. Show that $\mathrm{f}:\left\{\mathrm{x} \in \mathrm{R}:-1<\mathrm{x}<1\right.$ defined by $f(x)=\frac{x}{1+|x|}, \mathrm{x} \in \mathrm{R}$ is a one - one onto function
33.

Show that $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by i) $f(x)=\frac{4 x-3}{5}, x \in R$
ii) $f(x)=\frac{3 x-1}{2}, x \in R$ is one - one and onto function.
34.

Show that $\mathrm{f}:[-1,1] \rightarrow \mathrm{R}$, given by $f(x)=\frac{x}{x+2}$ is one - one. Find the inverse of
$\mathrm{f}:[-1,1] \rightarrow$ range of f .
35. Show that the function $f: R \rightarrow R$ defined by $f(x)=2 x^{3}-7$ is a bijection.
36. Prove that the modulus function $f(x)=|x|$ is neither one - one nor onto.
37. If $\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+2$, then find $\operatorname{gof}\left(\frac{3}{2}\right)$.
38. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, find fof (x).
39. If f and g are two functions given by $\mathrm{f}=\{(1,2),(3,5),(4,1)\}, \mathrm{g}=\{(2,3),(5,1),(1,3)\}$, find fog.
40. If the function $f:[1, \infty) \rightarrow[1, \infty)$ defined by $f(x)=2^{x(x-1)}$ is invertible, find $f^{-1}(x)$
41. Let $\mathrm{A}=\{-1,0,1,2\} \mathrm{B}=\{-4,-2,0,2\} . \mathrm{f}, \mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$ be two functions defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}, \forall \mathrm{x} \in \mathrm{A}, g(x)=2\left|x-\frac{1}{2}\right|-1, \forall \mathrm{x} \in \mathrm{A}$. Are f and g equal? Justify your answer.
42. Consider $\mathrm{f}: \mathrm{R}_{+} \rightarrow[4, \infty)$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+4$. Show that f is invertible with $f^{-1}(y)=\sqrt{y-4}$, where R_{+}is the set of all non - negative real numbers.
43. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ be a function given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+4 \mathrm{x}+7$. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$, where S is the range of f, is invertible. Also find the inverse of f.
44. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$, show that f is invertible. Find f^{-1}

SELF STUDY

45. Show that $f: R \rightarrow R$ defined by $f(x)=x^{2}$ is neither one - one nor onto.
46. Write the number of one - one functions from $\{a, b, c\}$ to itself.
47. Show that an onto function $\mathrm{f}:\{1,2,3\} \rightarrow\{1,2,3\}$ is always one - one
48. Let A and B are any two sets. Show that $f: A \times B \rightarrow B \times A$ defined by $f(a, b)=(b, a)$ is a bijective function.
49. Show that the function f in $\mathrm{A}=\mathrm{R}-\left\{\frac{2}{3}\right\}$ defined by $\mathrm{f}(\mathrm{x})=\frac{4 x+3}{6 x-4}$ is one - one and onto. Find f^{-1}.

INDIAN SCHOOL DARSAIT Class XII Mathematics Worksheet (Chapter-1: Relations \& Functions)	
50.	Let $\mathrm{A}=\{x \in R,-1 \leq x \leq 1\}=\mathrm{B}$. Show that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}\|\mathrm{x}\|$ is a bijection.
51.	Let R_{0} be the set of non - zero real numbers. Show that $f: R \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=\frac{1}{x}$ is one - one and onto.
52.	Show that $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=\frac{x}{1+x^{2}} \forall \mathrm{x} \in \mathrm{R}$ is neither one - one nor onto.
53.	Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=\left\{\begin{array}{l}2 x, x>3 \\ x^{2}, 1<x \leq 3 \\ 3 x, x \leq 1\end{array}\right.$, find $\mathrm{f}(-1)+\mathrm{f}(2)+\mathrm{f}(4)$
54.	Let $[0,1] \rightarrow[0,1]$ be defined by $f(x)=\left\{\begin{array}{l}x, \text { if xis rational } \\ 1-x, \text { if xis irrational }\end{array}\right.$, find (fof) x
55.	If X and Y are two sets having 2 and 3 elements respectively, find the number of functions from X to Y .
56.	If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be the signum function given by $f(x)=\left\{\begin{array}{r}1 \text {, if } x>0 \\ 0 \text {, if } x=0 \\ -1, \text { if } x<0\end{array}\right.$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be the greatest integer function given by $g(x)=[x]$, where $[x]$ is the greatest integer less than or equal to x. Does gof and fog coincide in $[0,1]$?
57.	Let $\mathrm{g}(\mathrm{x})=1+\mathrm{x}-[\mathrm{x}]$ and $f(x)=\left\{\begin{array}{r}1, \text { if } x>0 \\ 0, \text { if } x=0 \\ -1, \text { if } x<0\end{array}\right.$, find fog (x).
58.	Find fog and gof if i) $f(x)=\|x\|, \quad g(x)=\|5 x-2\| ~ i i) ~ f(x)=8 x^{3}$ and $g(x)=x$
59.	Let $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x, g(y)=3 y+4$ and $h(z)=\operatorname{Sin} z$ $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$. Show that ho(gof) = (hog)of.
60.	Let f, g, h be functions from R to R, show that ($\mathrm{f}+\mathrm{g}$) oh = for +g o h
61.	Consider $f, g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=$ Cosx. Show that f and g are one - one but $\mathrm{f}+\mathrm{g}$ is not one - one.
62.	If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x}$, then find the value of $(g \circ f)\left(\frac{e-1}{e+1}\right)$
63.	If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $\operatorname{fof}(\mathrm{x})=\mathrm{x} \forall x \neq \frac{2}{3}$. What is the inverse of f ?
64.	If $f(x)=\frac{x-1}{x+1},(\mathrm{x} \neq-1,1)$, show that $f \circ f^{-1}$ is an identity function.

