	INDIAN SCHOOL DARSAIT ass XII Mathematics Worksheet Worksheet \# 3 Binary Operations (Chapter - 1: Relations \& Functions)
CLASS WORK	
1.	State which of the following operations are binary? i) $a * b=\mathrm{a}+\mathrm{ab}, \mathrm{a}, \mathrm{b} \in \mathrm{Q}$ ii) $a * b=\mathrm{a}+4 \mathrm{~b}^{2}, \mathrm{a}, \mathrm{b} \in \mathrm{R}$ iii) $a * b=\mathrm{a}^{3}+\mathrm{b}^{3}, \mathrm{a}, \mathrm{b} \in \mathrm{N}$ iv) $a * b=\mathrm{a}-\mathrm{b}+\mathrm{ab}, \mathrm{a}, \mathrm{b} \in \mathrm{Z}$
2.	Check whether the following operations defined on the given set are commutative and associative: i) $a * b=\frac{a}{b+1}, \mathrm{a}, \mathrm{b} \in \mathrm{R}-\{-1\}$ iv) $a * b=1, \mathrm{a}, \mathrm{b} \in \mathrm{N}$ ii) $a * b=\frac{a+b}{2}, \mathrm{a}, \mathrm{b} \in \mathrm{N}$ iii) $a * b=\mathrm{a}-\mathrm{b}+\mathrm{ab}, \mathrm{a}, \mathrm{b} \in \mathrm{Z}$
3.	On Q , the set of rational numbers, an operation * is defined by $a * b=\frac{a b}{5}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$. Show that $*$ is i) a binary operation ii) commutative and associative. Find the identity element for * in Q. Also prove that every non - zero element of Q is invertible
4.	Let $*$ be an operation on the set $\mathrm{Q}-\{1\}$, defined by $a * b=a+b-a b$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Q}-\{1\}$. Check whether $*$ is commutative and associative. Find the identity element for with respect to $*$. Also prove that every element of $Q-\{1\}$ is invertible?
5.	Let $\mathrm{A}=\mathrm{N} \cup\{0\} \times \mathrm{N} \cup\{0\}$ and $*$ be a binary operation on A defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}$, $b+d)$ for all $(a, b),(c, d) \in A$. Show that $*$ is commutative and associative. Also find the identity element for $*$ in A.
6.	Let $\mathrm{A}=\mathrm{N} \times \mathrm{N}$ and $*$ be a binary operation on A defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ad}+\mathrm{bc}, \mathrm{bd})$ for all $(a, b),(c, d) \in A$. Show that i) * is commutative ii) * is associative iii) has no identity element
7.	Let * be a binary operation on N by a * $\mathrm{b}=\mathrm{LCM}$ of a and b for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{N}$. i) Find $5 * 7,20 * 16$ ii) Is * commutative and associative? iii) Find the identity element in N w.r.to * iv) Which are the invertible elements of N ?
8.	Let X be a non - empty set and * be a binary operation defined on $\mathrm{P}(\mathrm{X})$, the power set of X, defined by $A * B=A \cup B$, for all $A, B \in P(X)$. i) Prove that * is commutative and associative ii) Find the identity element w.r.t * iii) Show that ϕ is the invertible element If O is another operation defined on $P(X)$ by $A O B=A \cap B$ for all $A, B \in P(X)$. Show that * is distributive over O.
9.	Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as $a * b=\left\{\begin{array}{ll}a+b, & \text { if } a+b<6 \\ a+b-6, & \text { if } a+b \geq 6\end{array}\right.$. Show that i) 0 is the identity for this operation ii) each element of a is invertible with $6-\mathrm{a}$ is the inverse.

INDIAN SCHOOL DARSAIT

Class XII

Mathematics Worksheet

Worksheet \# 3 Binary Operations

(Chapter-1: Relations \& Functions)

10. Consider the binary operations *, o : $\mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ defined as $\mathrm{a} * \mathrm{~b}=|\mathrm{a}-\mathrm{b}|$ and $a o b=a$ for all $a, b \in R$. Show that i) * is commutative but not associative
ii) o is associative but not commutative
iii) * is distributive over o
11. Consider the binary operation $*$ on the set $\{1,2,3,4,5\}$ defined by $a * b=H C F$ of a and b.
i) Write the operation table.
ii) Is * commutative?
iii) Also compute $(2 * 3) * 5 \quad \&(2 * 3) *(4 * 5)$
12.

A binary operation * is defined on the set by $a * b=\left\{\begin{array}{lr}a, & \text { if } b=0 \\ |a|+b, & \text { if } b \neq 0\end{array}\right.$. If at least one of a and b is 0 , then prove that $a * b=b * a$. Check whether $*$ is commutative. Also find the identity element w.r to $*$ if it exists.
13. On the set $\mathrm{M}=\mathrm{A}(\mathrm{x})=\left\{\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]: x \in R\right\}$ of 2×2 matrices, find the identity element for the binary operation "Multiplication of matrices". Also find inverse of each element of M.

HOME WORK

14. \quad Check whether the following operations defined on the given set are commutative and associative: -
i) $a * b=2^{a b}, \mathrm{a}, \mathrm{b} \in \mathrm{Q}$
ii) $a * b=\mathrm{a}^{3}+\mathrm{b}^{3}, \mathrm{a}, \mathrm{b} \in \mathrm{N}$
iii) $a * b=\mathrm{ab}+1, \mathrm{ab} \in \mathrm{Q}$
15. Let * be an operation onQ Q_{0}, the set of non - zero rational numbers, defined by $a * b=\frac{a b}{4}$ for all $a, b \in Q_{o}$. Show that $*$ is i) a binary operation ii) commutative and associative. Find the identity element for * in Q . What is the inverse of each element of Q_{o} ?
16. On the set $\mathrm{R}-\{-1\}$, an operation $*$ is defined by $a * b=a+b+a b$ for all $a, b \in R-\{-1\}$. Prove that $*$ is i) a binary operation ii) commutative as well as associative. Find the identity element for with respect to $*$. Also prove that every element of $\mathrm{R}-\{-1\}$ is invertible?
17. Let * be an operation on Ro, the set of non - zero real numbers, defined by $a * b=\frac{a b}{3}$ for all $a, b \in Q_{o}$. Find the value of x, given that $2 *(x * 5)=10$
18. Let R_{0} be the set of all non - zero real numbers and $A=R_{0} \times R_{0}$. Let $*$ be a binary operation on A defined by $(a, b) *(c, d)=(a c, b d)$ for all $(a, b),(c, d) \in A$.
i) Show that $*$ is commutative and associative
ii) Find the identity element for $*$ in A
iii) Find the invertible elements in A
19. Let $A=Q \times Q$ and $*$ be an operation defined on A by $(a, b) *(c, d)=(a c, b+a d)$ for all (a, b) , $(\mathrm{c}, \mathrm{d}) \in \mathrm{A}$. Determine whether $*$ is binary. If so find the identity element in A. Also find the invertible elements in A.

INDIAN SCHOOL DARSAIT

Class XII

Mathematics Worksheet

Worksheet \# 3 Binary Operations

(Chapter-1: Relations \& Functions)

20. Let X be a non - empty set and * be a binary operation defined on $\mathrm{P}(\mathrm{X})$, the power set of X, defined by $A * B=A \cap B$, for all $A, B \in P(X)$.
i) Prove that * is commutative and associative ii) Find the identity element w.r.t *
iii) Show that X is the invertible element. If O is another operation defined on $\mathrm{P}(\mathrm{X})$ by $A O B=A \cup B$ for all $A, B \in P(X)$. Show that * is distributive over O.
21. Let X be a non - empty set and * be a binary operation defined on $P(X)$, the power set of X, defined by $A * B=(A-B) \cup(B-A)$, for all $A, B \in P(X)$.
Prove that i) ϕ is the identity element w.r.t * in $\mathrm{P}(\mathrm{X})$
ii) A is invertible for all $A \in P(X)$ and $A^{-1}=A$.
22. Define a binary operation * on the set $\{0,1,2,3,4,5,6\}$ as $a * b=\left\{\begin{array}{ll}a+b, & \text { if } a+b<7 \\ a+b-7, & \text { if } a+b \geq 7\end{array}\right.$.

Show that i) Write the operation table
ii) 0 is the identity for this operation
iii) each element of a is invertible with 6 - a is the inverse.
23. Define a binary operation * on the set $\mathrm{A}=\{0,1,2,3,4,5\}$ as $\mathrm{a} * \mathrm{~b}=\mathrm{ab}(\bmod 5)$. Show that i) 1 is the identity with respect to *
ii) All elements of A are invertible with $2^{-1}=3$ and $4^{-1}=4$
24. Let * be a binary operation defined on the set Z of integers by $a * b=a+b-5$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in$ Z. Show that * is commutative and associative. Also find the identity element if it exists.
25. Give an example of a binary operation which is
i) commutative as well as associative
ii) commutative but not associative
iii) associative but not commutative
26. Let $*$ be an operation defined on the set Z of integers by $a * b=a+b+2$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$. i) Prove that $*$ is a binary operation.
ii) Show that $*$ is commutative and associative.
iii) Find the identity element w.r.t * on Z
iv) Find the inverse of $a \in Z$.

SELF STUDY

27. Is $*$ defined on the set $A=\{1,2,3,4,5\}$ by $\mathrm{a} * \mathrm{~b}=\mathrm{LCM}$ of a and b , a binary operation? Justify your answer.
28.

A binary operation * on $\mathrm{R}-\{-1\}$ defined as $a * b=\frac{a}{b+1}$. Is * commutative and associative? Justify your answer.
29. Consider the binary operation $*$ on the set $\mathrm{A}=\{1,2,3,4,5\}$ defined by $a * b=\operatorname{Min}\{a, b\}$. Write the operation table.
30. Let * be a binary operation defined on the set Q of rational numbers by $a * b=\frac{3 a b}{5}$ Show that $*$ is commutative and associative. Also find the identity element if it exists.
31. On the set Q_{+}of all positive rational numbers define the operation * by $a * b=\frac{a b}{3}, \mathrm{a}, \mathrm{b} \in \mathrm{Q}_{+}$
i) Show that * is a binary operation iii) Find the identity element w.r.t *
ii) Show that * is commutative and associative iv) What is the inverse of a $\in \mathrm{Q}_{+}$

Class XII	INDIAN SCHOOL DARSAIT
	Mathematics Worksheet
	Worksheet \# 3 Binary Operations
	(Chapter - 1: Relations \& Functions)

32. Consider the binary operation $*$ on the set $\mathrm{A}=\{6,7,8,9,10\}$ defined by $\mathrm{a} * \mathrm{~b}=\operatorname{Min}\{\mathrm{a}, \mathrm{b}\}$. Write the operation table.
33. If $\mathrm{A}=\mathrm{R}-\{0\}$ and $*$ be a binary operation defined on A by $\mathrm{a} * \mathrm{~b}=2 \mathrm{ab}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$. Then i) Show that * is commutative
ii) Show that * is associative
iii) Write the identity element w.r.t * on A
iv) If the inverse exists, find the inverse of a.
