Mathematics Worksheet

Worksheet \# 5 Continuity
(Chapter - 5: Continuity \& Differentiability)
CLASS WORK

	Examine the following functions for continuity at the indicated points
1.	$f(x)=\left\{\begin{array}{cc} x^{3}+1, & x \neq 0 \\ 1, & x=0 \end{array} \quad \text { at } \mathrm{x}=0\right.$
2.	$f(x)=\left\{\begin{array}{c} \operatorname{Sin} x-\operatorname{Cos} x, \quad x \neq 0 \\ -1, \quad x=0 \end{array} \quad \text { at } \mathrm{x}=0\right.$
3.	$f(x)=\left\{\begin{array}{cc} \frac{1-\cos 2 x}{x^{2}}, & x \neq 0 \\ 5, & x=0 \end{array} \text { at } \mathrm{x}=0\right.$
4.	$f(x)=\left\{\begin{array}{ll} \frac{x^{4}+2 x^{3}+x^{2}}{\tan ^{-1} x}, & x \neq 0 \\ 0, & x=0 \end{array} \text { at } \mathrm{x}=0\right.$
5.	$f(x)=\left\{\begin{aligned} 3 x+5, & x \geq 2 \\ x^{2}, & x<2\end{aligned}\right.$ at $\mathrm{x}=2$
6.	$f(x)=\left\{\begin{array}{l} \frac{x^{2}}{2}, 0 \leq x \leq 1 \\ 2 x^{2}-3 x+\frac{3}{2}, 1<x \leq 2 \end{array} \text { at } \mathrm{x}=1\right.$
7.	$f(x)=\left\{\begin{array}{cc} \frac{\sin x}{x}, & x<0 \\ x+1, & x \geq 0 \end{array} \text { at } \mathrm{x}=0\right.$
8.	Find all points of discontinuity of the following functions OR Discuss the continuity of the following functions
9.	$f(x)= \begin{cases}x^{3}-3, & x \leq 2 \\ x^{2}+1, & x>2\end{cases}$
10.	$f(x)= \begin{cases}\frac{\sin x}{x}, & x<0 \\ x+1, & x \geq 0\end{cases}$
11.	$f(x)= \begin{cases}\frac{\|x\|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$
12.	$f(x)= \begin{cases}\sin x-\cos x, & x \neq 0 \\ -1, & x=0\end{cases}$
13.	$f(x)=\left\{\begin{array}{lc} \|x\|+3, & x \leq-3 \\ -2 x, & -3<x<3 \\ 6 x+2, & x \geq 3 \end{array}\right.$

INDIAN SCHOOL DARSAIT Class XII Mathematics Worksheet Worksheet \# 5 Continuity (Chapter - 5: Continuity \& Differentiability)	
14.	$f(x)=\left\{\begin{array}{lc} 2 x, & x<0 \\ 0, & 0 \leq x \leq 1 \\ 4 x, & x>1 \end{array}\right.$
	Find the value of k in each of the following: -
15.	$f(x)=\left\{\begin{array}{l} 3 x-8, x \leq 5 \\ 2 k, x>5 \end{array} \text { is continuous at } \mathrm{x}=5\right.$
16.	$f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}+\cos x, x \neq 0 \\ k, x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$
17.	$f(x)=\left\{\begin{array}{l}\frac{1-\cos 4 x}{8 x^{2}}, x \neq 0 \\ k, x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$
18.	$f(x)=\left\{\begin{array}{l}\frac{k \cos x}{\pi-2 x}, x \neq \pi / 2 \\ 3, x=\pi / 2\end{array}\right.$ is continuous at $\mathrm{x}=\pi / 2$
19.	For what value of λ in the function $f(x)=\left\{\begin{array}{l}\lambda\left(x^{2}-2 x\right), x \leq 0 \\ 4 x+1, x>0\end{array}\right.$ is continuous at $\mathrm{x}=0$
20.	If the function $f(x)=\left\{\begin{array}{l}3 a x+b, x>1 \\ 11, x=1 \\ 5 a x-2 b, x<1\end{array}\right.$ is continuous at $\mathrm{x}=1$. Find the value of a and b.
21.	If the function f defined by $f(x)=\left\{\begin{array}{l}\frac{x-5}{\|x-5\|}+a, x<5 \\ a+b, x=5 \\ \frac{x-5}{\|x-5\|}+b, x>5\end{array}\right.$ is continuous at $\mathrm{x}=5$, find the values of a and b.
22.	Find the values of a and b such that the function f defined by $f(x)=\left\{\begin{array}{l}5, x \leq 2 \\ a x+b, 2<x<10 \\ 21, x \geq 10\end{array}\right.$ is a continuous function
23.	$f(x)=\left\{\begin{array}{l}x^{2}+a x+b, 0 \leq x<2 \\ 3 x+2,2 \leq x \leq 4 \\ 2 a x+5 b, 4<x \leq 8\end{array}\right.$ is continuous on [0,8]. Find the values of a and b.

	INDIAN SCHOOL DARSAIT
24.	If $f(x)=\left\{\begin{array}{l}x+a \sqrt{2} \sin x, 0 \leq x<\pi / 4 \\ 2 x \cot x+b, \pi / 4 \leq x<\pi / 2 \\ a \cos 2 x-b \sin x, \pi / 2 \leq x \leq \pi\end{array}\right.$ is continuous on [0, $]$], find the values of a and b.
25.	Find the value of a for which the function $f(x)=\left\{\begin{array}{l}a \sin \frac{\pi}{2}(x+1), x \leq 0 \\ \frac{\tan x-\sin x}{x^{3}}, x>0\end{array}\right.$ is continuous at $x=0$
26.	If the function f defined by $f(x)=\left\{\begin{array}{l}\frac{\sin (a+1) x+\sin x}{x}, x<0 \\ c, x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{3 / 2}}, x>0\end{array}\right.$ is continuous at $\mathrm{x}=0$, find the values of a, b and c
27.	If $f(x)=\frac{\sqrt{2} \operatorname{Cos} x-1}{\operatorname{Cot} x-1}, x \neq \frac{\pi}{4}$, find the value of $f\left(\frac{\pi}{4}\right)$ so that $f(x)$ becomes continuous at $x=\frac{\pi}{4}$.
28.	Discuss the continuity of the function $f(x)=\|x-1\|+\|x-2\|$ at $\mathrm{x}=1$ and $\mathrm{x}=2$.
29.	Show that the function $f(x)=\operatorname{Sin}\left(x^{2}\right)$ is a continuous function
30.	Show that the function $f(x)=\|\operatorname{Cos} x\|$ is a continuous function
HOME WORK	
Examine the following functions for continuity at the indicated points	
31.	$f(x)=\left\{\begin{array}{ccc} \frac{1-x^{n}}{1-x}, & x \neq 1 \\ n-1, & x=1 \end{array} \quad \text { at } \mathrm{x}=1\right.$
32.	$f(x)=\left\{\begin{array}{cc} \frac{2 x^{2}-3 x-2}{x-2}, & x \neq 2 \\ 5, & x=2 \end{array} \text { at } \mathrm{x}=2\right.$
33.	$f(x)=\left\{\begin{array}{cc} x \tan ^{-1} x, & x \neq 0 \\ 0, & x=0 \end{array} \text { at } \mathrm{x}=\mathrm{o}\right.$
34.	$f(x)=\left\{\begin{array}{cc} x \operatorname{Sin}^{-1} x, & x \neq 0 \\ 0, & x=0 \end{array} \text { at } \mathrm{x}=0\right.$
Find all points of discontinuity of the following functions OR Discuss the continuity of the following functions	

INDIAN SCHOOL DARSAIT Class XII Mathematics Worksheet Worksheet \# 5 Continuity (Chapter - 5: Continuity \& Differentiability)	
35.	$f(x)=\left\{\begin{array}{lc} x+5, & x \leq 1 \\ x-5, & x>1 \end{array}\right.$
36.	$f(x)= \begin{cases}x+2, & x \leq 1 \\ x-2, & 1<x<2 \\ 0, & x \geq 2\end{cases}$
37.	$f(x)= \begin{cases}x+2, & x<1 \\ 0, & x=1 \\ x-2, & x>1\end{cases}$
	Find the value of k in each of the following: -
38.	$f(x)=\left\{\begin{array}{l} k x+1, x \leq 5 \\ 3 x-5, x>5 \end{array} \text { is continuous at } \mathrm{x}=5\right.$
39.	$f(x)=\left\{\begin{array}{l}2 x+1, x<2 \\ k, x=2 \\ 3 x-1, x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$
40.	$f(x)=\left\{\begin{array}{ll}\frac{\operatorname{Sin} x+x \operatorname{Cos} x}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$.
41.	$f(x)=\left\{\begin{array}{ll}\frac{\operatorname{Sin} 5 x}{3 x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$.
42.	Find the choice on a and b so that $f(x)=\left\{\begin{array}{l}a x^{2}+b, x>2 \\ 2, x=2 \\ 2 a x-b, x<2\end{array}\right.$ is continuous at $\mathrm{x}=2$
43.	Find the value of a and b so that the function $f(x)=\left\{\begin{array}{l}x+2, x \leq 2 \\ a x+b, 2<x<3 \\ 3 x-2, x \geq 3\end{array}\right.$ is continuous
44.	If the function f defined by $f(x)=\left\{\begin{array}{l}\frac{x-4}{\|x-4\|}+p, x<4 \\ p+q, \quad x=4 \\ \frac{x-4}{\|x-4\|}+q, \quad x>4\end{array}\right.$ is continuous at $\mathrm{x}=4$, find the values of p and q .
45.	$f(x)=\left\{\begin{array}{l}x^{2} / a, 0 \leq x<1 \\ a, 1 \leq x<\sqrt{2} \quad \text { is continuous on }[0, \infty) . \text { Find the values of a and } \mathrm{b} . \\ \frac{2 b^{2}-4 b}{x^{2}}, \sqrt{2} \leq x<\infty\end{array}\right.$.

| $\begin{array}{l}\text { INDIAN SCHOOL DARSAIT } \\ \text { Mathematics Worksheet }\end{array}$ |
| :--- | :--- |
| Worksheet \# 5 Continuity |$\}$

	INDIAN SCHOOL DARSAIT
Class XII	Mathematics Worksheet
	Worksheet \# 5 Continuity
	(Chapter - 5: Continuity \& Differentiability)

55. $f(x)= \begin{cases}-2, & x \leq-1 \\ 2 x, & -1<x<1 \\ 2, & x \geq 1\end{cases}$

Find the value of k in each of the following: -
56.
$f(x)=\left\{\begin{array}{ll}2 x+1, & x<2 \\ k, & x=2 \\ 3 x-1, & x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$.
57. $f(x)=\left\{\begin{array}{ll}3 x-8, & x \leq 5 \\ 2 k, & x=5\end{array}\right.$ is continuous at $\mathrm{x}=5$.
58. $f(x)=\left\{\begin{array}{ll}k x+8, & x \leq \pi \\ \operatorname{Cos} x, & x>\pi\end{array}\right.$ is continuous at $\mathrm{x}=\pi$.
59.
$f(x)=\left\{\begin{array}{ll}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, & x \neq 2 \\ k, & x=2\end{array}\right.$ is continuous at $\mathrm{x}=2$
60. Show that the function $f(x)=\operatorname{Sin}|x|$ is a continuous function

