Class XII

INDIAN SCHOOL DARSAIT Mathematics Worksheet Worksheet # 5 Continuity (Chapter – 5: Continuity & Differentiability)

CLASS WORK

	Examine the following functions for continuity at the indicated points
1.	$f(x) = \begin{cases} x^3 + 1, & x \neq 0 \\ 1, & x = 0 \end{cases} \text{ at } x = 0$
2.	$f(x) = \begin{cases} \sin x - \cos x, & x \neq 0 \\ -1, & x = 0 \end{cases} \text{ at } \mathbf{x} = 0$
3.	$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & x \neq 0\\ 5, & x = 0 \end{cases} \text{ at } x = 0$
4.	$f(x) = \begin{cases} \frac{x^4 + 2x^3 + x^2}{\tan^{-1}x}, & x \neq 0\\ 0, & x = 0 \end{cases} \text{ at } \mathbf{x} = 0$
5.	$f(x) = \begin{cases} 3x+5, & x \ge 2\\ x^2, & x < 2 \end{cases} \text{ at } x = 2$
6.	$f(x) = \begin{cases} \frac{x^2}{2}, & 0 \le x \le 1\\ 2x^2 - 3x + \frac{3}{2}, & 1 < x \le 2 \end{cases} \text{ at } x = 1 \end{cases}$
7.	$f(x) = \begin{cases} \frac{\sin x}{x}, & x < 0\\ x+1, & x \ge 0 \end{cases} \text{ at } \mathbf{x} = 0$
8.	Find all points of discontinuity of the following functions
	Discuss the continuity of the following functions
9.	$f(x) = \begin{cases} x^3 - 3, & x \le 2\\ x^2 + 1, & x > 2 \end{cases}$
10.	$f(x) = \begin{cases} \frac{\sin x}{x}, & x < 0\\ x+1, & x \ge 0 \end{cases}$
11.	$f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$
12.	$f(x) = \begin{cases} \sin x - \cos x, & x \neq 0\\ -1, & x = 0 \end{cases}$
13.	$\int x + 3, x \le -3$
	$f(x) = \begin{cases} -2x, & -3 < x < 3 \end{cases}$
	$bx+2, x \ge 3$

Page 1/6

	INDIAN SCHOOL DARSAIT		
Class XII Mathematics Worksheet			
	Worksheet # 5 Continuity		
	(Chapter – 5: Continuity & Differentiability)		
14.	$\int 2x, \ x < 0$		
	$f(x) = \begin{cases} 0, & 0 \le x \le 1 \end{cases}$		
	4x, x > 1		
	Find the value of k in each of the following: -		
15.	$f(x) = \begin{cases} 3x - 8, x \le 5\\ 2k, x > 5 \end{cases}$ is continuous at x = 5		
16.	$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & x \neq 0\\ k, & x = 0 \end{cases}$ is continuous at $x = 0$		
17.	$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0\\ k, x = 0 \end{cases}$ is continuous at x = 0		
18.	$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & x \neq \frac{\pi}{2} \\ 3, & x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$		
19.	For what value of λ in the function $f(x) = \begin{cases} \lambda(x^2 - 2x), x \le 0\\ 4x + 1, x > 0 \end{cases}$ is continuous at $x = 0$		
20.	$\int 3ax+b, x>1$		
	If the function $f(x) = \begin{cases} 11, x = 1 \end{cases}$ is continuous at x = 1.		
	5ax-2b, x < 1		
01	Find the value of a and b.		
21.	$\left \frac{x-5}{ x-5 } + a, x < 5 \right $		
	If the function I defined by $f(x) = \begin{cases} a+b, x=5 \\ \frac{x-5}{ x-5 } + b, x>5 \end{cases}$ is continuous at $x = 5$, find the values		
	of a and b.		
22.	Find the values of a and b such that the function f defined by $f(x) = \begin{cases} 5, x \le 2\\ ax+b, 2 < x < 10 \end{cases}$ is $21, x \ge 10$		
	a continuous function		
23.	$x^2 + ax + b, 0 \le x < 2$		
	$f(x) = \begin{cases} 3x+2, 2 \le x \le 4 \\ 3x+2, 2 \le x \le 4 \end{cases}$ is continuous on [0,8]. Find the values of a and b.		
	$\lfloor 2ax + 5b, 4 < x \le 8$		

		INDIAN SCHOOL DARSAIT
	Class.	XII Mathematics Worksheet
		Worksheet #5 Continuity
		(Chapter – 5: Continuity & Differentiability)
2	4.	$\int x + a\sqrt{2}\sin x, 0 \le x < \frac{\pi}{4}$
	If f	$f(x) = \begin{cases} 2x \cot x + b, \frac{\pi}{4} \le x < \frac{\pi}{2} \end{cases}$ is continuous on $[0,\pi]$, find the values of a and b.
		$a\cos 2x - b\sin x, \frac{\pi}{2} \le x \le \pi$
2	5. Fin	d the value of a for which the function $f(x) = \begin{cases} a \sin \frac{\pi}{2} (x+1), x \le 0\\ \frac{\tan x - \sin x}{x^3}, x > 0 \end{cases}$ is continuous at
	x =	0
2	6. If th	he function f defined by $f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, x < 0\\ c, x = 0\\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{x}, x > 0 \end{cases}$ is continuous at x = 0, find the
	valı	bx'^2
2	$\begin{array}{c c} \hline 7. \\ If f \end{array}$	$f(x) = \frac{\sqrt{2} \cos x - 1}{Cot x - 1}, x \neq \frac{\pi}{4}$, find the value of $f\left(\frac{\pi}{4}\right)$ so that $f(x)$ becomes continuous at
	x =	$\frac{\pi}{4}$.
2	8. Dis	cuss the continuity of the function $f(x) = x-1 + x-2 $ at x= 1 and x = 2.
2	9. Sho	we that the function $f(x) = Sin(x^2)$ is a continuous function
3	0. Sho	we that the function $f(x) = \cos x $ is a continuous function
		HOME WORK
	Exa	mine the following functions for continuity at the indicated points
3	1. $f(x)$	$f(x) = \begin{cases} \frac{1-x^n}{1-x}, & x \neq 1\\ n-1, & x = 1 \end{cases} \text{ at } x = 1$
3	2. $f(x)$	$f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2}, & x \neq 2\\ 5, & x = 2 \end{cases} $ at $x = 2$
3	3. f(x)	$) = \begin{cases} x \tan^{-1} x, \ x \neq 0 \\ 0, \qquad x = 0 \end{cases} \text{ at } x = 0 $
3	4. $f(x)$	$f(x) = \begin{cases} x \sin^{-1} x, \ x \neq 0 \\ 0, \ x = 0 \end{cases} \text{ at } x = 0$
	Fin	d all points of discontinuity of the following functions
	Dis	OR cuss the continuity of the following functions
	P a	ge 3/6

		INDIAN SCHOOL DARSAIT	
	Class XII Mathematics Worksheet		
		Worksheet # 5 Continuity	
		(Chapter – 5: Continuity & Differentiability)	
3	5.	$f(x) = \begin{cases} x+5, & x \le 1 \end{cases}$	
_		$\left(x-5, x>1\right)$	
3	6.	$\begin{cases} x+2, x \le 1 \end{cases}$	
	Ĵ	$f(x) = \begin{cases} x - 2, & 1 < x < 2 \\ x - x - 2, & x < 2 \end{cases}$	
2	7	$\begin{bmatrix} 0, & x \ge 2 \end{bmatrix}$	
3	1.	x+2, x<1	
	J	$f(x) = \begin{cases} 0, & x = 1 \\ x = 2, & x > 1 \end{cases}$	
	F	$(x-2, x \ge 1)$	
	1	The the value of K in each of the following.	
3	8.	$f(x) = \int kx + 1, x \le 5$ is continuous at $x = 5$	
	J	3x-5, x>5 is continuous at x - 5	
3	9.	(2x+1, x < 2)	
		$f(x) = \begin{cases} k, x = 2 \end{cases}$ is continuous at x = 2	
		3x-1, x>2	
4	0.	$\int \sin x + x \cos x$ $x \neq 0$	
	j	$f(x) = \begin{cases} \hline x \\ x \end{cases}$, $x \neq 0$ is continuous at $x = 0$.	
	_	$ k, \qquad x = 0 $	
4	1.	$f(x) = \begin{cases} \frac{\sin 5x}{2}, & x \neq 0 \end{cases}$ is continuous at $x = 0$	
	J	$\int (x)^{2} \int 3x \qquad \text{is continuous at } x = 0.$	
4	2.	$\int ax^2 + b \cdot x > 2$	
	F	Find the choice on a and b so that $f(x) = \begin{cases} 2, x = 2 \end{cases}$ is continuous at x = 2	
		2ax-b, x < 2	
4	3.	$(x+2, x \le 2)$	
	F	Find the value of a and b so that the function $f(x) = \begin{cases} ax+b, 2 < x < 3 \\ ax + b, 2 < x < 3 \end{cases}$ is continuous	
		$3x-2, x \ge 3$	
4	4.	$\left(\frac{x-4}{p}+p,x<4\right)$	
	т	f the function f defined by $f(x)$ is continuous at $x = 4$ find the	
	1	I the function I defined by $f(x) = \begin{cases} p+q, & x=4 \end{cases}$ is continuous at $x = 4$, find the $x-4$	
		$\left \frac{x+q}{ x-4 }+q, x>4\right $	
	v	values of p and q.	
4	5.	$\left(\frac{x^2}{a}, 0 \le x < 1 \right)$	
	j	$f(x) = \begin{cases} a, 1 \le x < \sqrt{2} \end{cases}$ is continuous on $[0, \infty)$. Find the values of a and b.	
		$\left \frac{2b^2-4b}{2},\sqrt{2}\leq x<\infty\right $	

Page 4/6

	INDIAN SCHOOL DARSAIT		
0	Class XII Mathematics Worksheet		
	Worksheet # 5 Continuity		
	(Chapter – 5: Continuity & Differentiability)		
46.	$\left(-2\sin x, -\pi \le x \le -\pi/2\right)$		
	If the function f defined by $f(x) = \begin{cases} a \sin x + b, -\pi/2 < x < \pi/2 \\ is continuous on [-\pi,\pi]. Find \end{cases}$		
	$\cos x, \pi/2 \le x \le \pi$		
	the values of a and b		
47.	$\int \sqrt{1+kx} - \sqrt{1-kx} \qquad 1 < \dots < 0$		
	Find the value of the constant k so that the function $f(x) = \begin{cases} \hline x, -1 \le x < 0 \\ \frac{2x+1}{x-1}, 0 \le x < 1 \end{cases}$ is		
	continuous at x = 0		
48.	$\left \frac{1 - \cos 4x}{x^2}, x < 0 \right $		
	If the function f defined by $f(x) = \begin{cases} a, x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}}, x > 0 \end{cases}$ is continuous at $x = 0$, find the		
	value of a.		
49.	Find a relation between a and b so that the function $f(x) = \begin{cases} ax+1, x \le 3 \\ bx+3, x > 3 \end{cases}$ is continuous		
	at x = 3.		
50.	Discuss the continuity of the function $f(x) = x + x-1 $ at x= 1.		
51.	Show that the function $f(x) = \cos(x^2)$ is a continuous function		
	SELF STUDY		
	Examine the following functions for continuity at the indicated points		
52.	$f(x) = \begin{cases} 1+x^2, & 0 \le x < 1\\ 2-x, & x > 1 \end{cases} \text{ at } x = 1$		
53.	$f(x) = \begin{cases} \frac{ x-a }{x-a}, & x \neq a\\ 1, & x = a \end{cases}$ at the point x = a.		
54.	$\begin{cases} \frac{3}{2} - x, & \frac{1}{2} < x < 1 \end{cases}$		
	$f(x) = \begin{cases} \frac{3}{2}, & x = 1 \\ \frac{3}{2}, & x = 1 \end{cases} \text{ at the point } x = 1$		
	$\left \frac{3}{2} + x, 1 < x < 2 \right $		
	Find all points of discontinuity of the following functions OR		
	Discuss the continuity of the following functions		

C	INDIAN SCHOOL DARSAIT ass XII Mathematics Worksheet Worksheet # 5 Continuity
	(Chapter – 5: Continuity & Differentiability)
55.	$\left[-2, x \leq -1\right]$
	$f(x) = \begin{cases} 2x, & -1 < x < 1 \end{cases}$
	$2, \qquad x \ge 1$
	Find the value of k in each of the following: -
56.	$\left(2x+1, x<2\right)$
	$f(x) = \begin{cases} k, & x = 2 \end{cases}$ is continuous at $x = 2$.
	$\begin{vmatrix} 3x - 1, & x > 2 \end{vmatrix}$
57.	$f(x) = \int 3x - 8, x \le 5$ is continuous at $x = 5$
J	$\int (x)^{-} (2k), x=5$ is continuous at $x=3$.
58.	$f(x) = \int kx + 8, x \le \pi$ is continuous at $x = \pi$
	$\int (x)^{-1} \cos x, x > \pi$
59.	$\int x^3 + x^2 - 16x + 20$ $x \neq 2$
	$f(x) = \begin{cases} \frac{1}{(x-2)^2}, & x \neq 2 \\ \frac{1}{(x-2)^2}, & x \neq 2 \end{cases}$ is continuous at x = 2
	$k, \qquad x=2$
60.	Show that the function $f(x) = Sin x $ is a continuous function