Class XII

INDIAN SCHOOL DARSAIT Mathematics Worksheet Worksheet # 6 Continuity & Differentiability (Chapter – 5: Continuity & Differentiability)

CLASS WORK	
1.	Show that the function $f(x) = x $ is continuous but not differentiable at x = 0.
2.	Show that the function $f(x) = x - 2 $; $x \in R$ is continuous but not differentiable at $x = 2$
3.	Show that the function $f(x) = 2x - x $ is continuous but not differentiable at $x = 0$
4.	Discuss the differentiability of $f(x) = x x $ at $x = 0$.
5.	Write an example of a function which is continuous everywhere but not differentiable exactly at 5 points.
6.	$\int 3x - 2, 0 < x \le 1$
	Show that the function f defined as $f(x) = \begin{cases} 2x^2 - x, 1 < x \le 2 \text{ is continuous at } x = 2 \text{ but not} \\ 5x - 4, x > 2 \end{cases}$
	differentiable at x = 2
7.	Check the differentiability of the function $f(x) = \begin{cases} x[x], 0 \le x < 2\\ (x-1), 2 \le x < 3 \end{cases}$ at $x = 2$
8.	$\int 2x + 3, -3 \le x < -2$
	Examine the differentiability of the function f defined by $f(x) = \begin{cases} x+1, -2 \le x < 0 \\ x+2, 0 \le x \le 1 \end{cases}$
	at $x = -2$ and $x = 0$
9.	Find whether the following function is differentiable at $x = 1$ and $x = 2$ or not
	$x, x \le 1$
	$f(x) = \begin{cases} 2 - x, 1 < x \le 2\\ -2 + 3x - x^2, x > 2 \end{cases}$
10.	Show that the function $f(x) = x + 1 + x - 1 , x \in \mathbb{R}$, is not differentiable at $x = -1$ and $x = 1$.
11.	Find the value of p and q so that $f(x) = \begin{cases} x^2 + 3x + p, x \le 1 \\ qx + 2, x > 1 \end{cases}$ is differentiable at x = 1
	HOME WORK
12.	Show that the function $f(x) = x - 3 $; $x \in R$ is continuous but not differentiable at $x = 3$
13.	Show that the function $f(x) = x + 1 $; $x \in R$ is continuous but not differentiable at $x = -1$
14.	Check the differentiability of the function $f(x) = \begin{cases} 1+x, x \le 2\\ 5-x, x > 2 \end{cases}$ at $x = 2$

INDIAN SCHOOL DARSAITClass XIIMathematics WorksheetWorksheet # 6Continuity & Differentiability (Chapter – 5: Continuity & Differentiability)		
15.	Show that $f(x) = \begin{cases} 12x - 13, x \le 3\\ 2x^2 + 5, x > 3 \end{cases}$ is differentiable at x = 3. Also find f (3)	
16.	Show that the function f defined by $f(x) = \begin{cases} 3x - 2, 0 < x \le 1\\ 2x^2 - x, 1 < x \le 2\\ 5x - 4, x > 2 \end{cases}$ is continuous but not	
17.	differentiable at x = 2 Prove that the greatest integer function $f(x) = [x]$, $0 < x < 3$ is not differentiable at x = 1 and x = 2.	
18.	Show that the function $f(x) = x-1 + x+1 $ for all $x \in \mathbb{R}$ is not differentiable at $x = 1$ and $x = -1$.	
SELF STUDY		
19.	A function $f: R \to R$ satisfy the equation $f(x + y) = f(x).f(y)$ for all $x, y \in R$, $f(x) \neq 0$. Suppose that the function is differentiable at $x = 0$ and $f'(0) = 2$. Prove that $f'(x) = 2f(x)$.	
20.	For what choice of a and b is the function $f(x) = \begin{cases} x^2, x \le c \\ ax+b, x > c \end{cases}$ differentiable at x = c.	