| Class XIIINDIAN SCHOOL DARSAIT
 Mathematics Worksheet
 Worksheet \# 6 Continuity \& Differentiability
 (Chapter-5: Continuity \& Differentiability) |
| :---: | :---: |

CLASS WORK

1.	Show that the function $f(x)=\|x\|$ is continuous but not differentiable at $\mathrm{x}=0$.
2.	Show that the function $f(x)=\|x-2\| ; x \in R$ is continuous but not differentiable at $\mathrm{x}=2$
3.	Show that the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-\|\mathrm{x}\|$ is continuous but not differentiable at $\mathrm{x}=0$
4.	Discuss the differentiability of $f(x)=x\|x\|$ at $\mathrm{x}=0$.
5.	Write an example of a function which is continuous everywhere but not differentiable exactly at 5 points.
6.	Show that the function f defined as $f(x)=\left\{\begin{array}{l}3 x-2,0<x \leq 1 \\ 2 x^{2}-x, 1<x \leq 2 \\ 5 x-4, x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$ but not differentiable at $\mathrm{x}=2$
7.	Check the differentiability of the function $f(x)=\left\{\begin{array}{l}x[x], 0 \leq x<2 \\ (x-1), 2 \leq x<3\end{array}\right.$ at $\mathrm{x}=2$
8.	Examine the differentiability of the function f defined by $f(x)=\left\{\begin{array}{l}2 x+3,-3 \leq x<-2 \\ x+1,-2 \leq x<0 \\ x+2,0 \leq x \leq 1\end{array}\right.$ at $\mathrm{x}=-2$ and $\mathrm{x}=0$
9.	Find whether the following function is differentiable at $\mathrm{x}=1$ and $\mathrm{x}=2$ or not $f(x)=\left\{\begin{array}{l} x, x \leq 1 \\ 2-x, 1<x \leq 2 \\ -2+3 x-x^{2}, x>2 \end{array}\right.$
10.	Show that the function $\mathrm{f}(\mathrm{x})=\|\mathrm{x}+1\|+\|\mathrm{x}-1\|, \mathrm{x} \in \mathrm{R}$, is not differentiable at $\mathrm{x}=-1$ and $\mathrm{x}=1$.
11.	Find the value of p and q so that $f(x)=\left\{\begin{array}{l}x^{2}+3 x+p, x \leq 1 \\ q x+2, x>1\end{array}\right.$ is differentiable at $\mathrm{x}=1$
	HOME WORK
12.	Show that the function $f(x)=\|x-3\| ; x \in R$ is continuous but not differentiable at $\mathrm{x}=3$
13.	Show that the function $f(x)=\|x+1\| ; x \in R$ is continuous but not differentiable at $\mathrm{x}=-1$
14.	Check the differentiability of the function $f(x)=\left\{\begin{array}{l}1+x, x \leq 2 \\ 5-x, x>2\end{array}\right.$ at $\mathrm{x}=2$

INDIAN SCHOOL DARSAIT Class XII Mathematics Worksheet Worksheet \# 6 Continuity \& Differentiability (Chapter - 5: Continuity \& Differentiability)	
15.	Show that $f(x)=\left\{\begin{array}{l}12 x-13, x \leq 3 \\ 2 x^{2}+5, x>3\end{array}\right.$ is differentiable at $\mathrm{x}=3$. Also find $\mathrm{f} \mid(3)$
16.	Show that the function f defined by $f(x)=\left\{\begin{array}{l}3 x-2,0<x \leq 1 \\ 2 x^{2}-x, 1<x \leq 2 \\ 5 x-4, x>2\end{array}\right.$ is continuous but not differentiable at $\mathrm{x}=2$
17.	Prove that the greatest integer function $f(x)=[x], 0<x<3$ is not differentiable at $\mathrm{x}=1$ and $\mathrm{x}=2$.
18.	Show that the function $f(x)=\|x-1\|+\|x+1\|$ for all $\mathrm{x} \in \mathrm{R}$ is not differentiable at $\mathrm{x}=1$ and $\mathrm{x}=-1$.

SELF STUDY

19. A function $f: R \rightarrow R$ satisfy the equation $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) . \mathrm{f}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}, f(x) \neq 0$. Suppose that the function is differentiable at $\mathrm{x}=0$ and $f^{\prime}(0)=2$. Prove that $f^{\prime}(x)=2 f(x)$.
20. For what choice of a and b is the function $f(x)=\left\{\begin{array}{l}x^{2}, x \leq c \\ a x+b, x>c\end{array}\right.$ differentiable at $\mathrm{x}=\mathrm{c}$.
